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Abstract

The epidemic potential of a disease is traditionally assessed using the basic reproductive

number, R0. However, in populations with social or spatial structure a chronic disease is

more likely to invade than an acute disease with the same R0, because it persists longer

within each group and allows for more host movement between groups. Acute diseases

�perceive� a more structured host population, and it is more important to consider host

population structure in analyses of these diseases. The probability of a pandemic does

not arise independently from characteristics of either the host or disease, but rather from

the interaction of host movement and disease recovery timescales. The R* statistic, a

group-level equivalent of R0, is a better indicator of disease invasion in structured

populations than the individual-level R0.
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I N TRODUCT ION

At the turn of the 20th century, rinderpest swept through

Africa, devastating populations of African buffalo and

wildebeest (Sinclair 1977; Plowright 1982; Anderson 1995).

From 1929 to 1983 recurrent rinderpest outbreaks occurred

in the buffalo and eland populations of Central and Eastern

Africa, while many other ungulate species, such as duikers,

steenbok, oribi, roan, sable and gerenuk, were relatively

unaffected (Anderson 1995). Why were some hosts affected

more than others? Traditionally, this may have been

explained by immunological differences in susceptibility.

However, we illustrate a significant component of beha-

vioural susceptibility exists that is not a simple function of

group size or population density, but rather the interaction

of group size and host movement.

Risk of disease is assumed to be a significant cost of

group living (Freeland 1976; Moller et al. 1993), yet recent

comparative analyses that investigated the effect of group

size on the immune system or parasite diversity have had

mixed results (Cote & Poulin 1995; Nunn et al. 2000; Nunn

2002; Stanko et al. 2002; Tella 2002; Nunn et al. 2003a,b).

These mixed results may be due, in part, to the interaction

of movement and group size, whereby reduced movement

rates can mitigate some costs associated with larger group

sizes. Specifically, large groups will be exposed to fewer

introductions of disease if movement between groups is

sufficiently rare.

Several recent theoretical studies have investigated the

role of host population structure in the invasion or

persistence of disease (Hess 1996; Swinton et al. 1998;

Keeling 1999; Keeling & Gilligan 2000; Keeling & Grenfell

2000; Thrall et al. 2000; Park et al. 2001; Fulford et al. 2002;

Keeling & Rohani 2002; Park et al. 2002; Hagenaars et al.

2004). These studies incorporated host movement into

structured disease models either phenomenologically or

mechanistically. Models with mechanistic host movement

explicitly move individuals from one group to another (e.g.

Hess 1996; Thrall et al. 2000; Keeling & Rohani 2002).

Models with phenomenological host mixing assume that

hosts do not move between groups but can infect others

within and among groups simultaneously (e.g. Ball et al.

1997; Swinton et al. 1998; Hagenaars et al. 2004). The

phenomenological approach may be appropriate for plant-

pathogen systems (e.g. Park et al. 2001, 2002), but can

obscure the relationships between host movement, group
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size and disease recovery in mobile host populations. For

example, in a system where between-group movements are

rare, an epidemic of an acute, highly transmissible disease

may run to completion within a group before any individual

moves and spreads infection to a new group. A mechanistic

model more readily captures this possibility, while a model

with phenomenological mixing between groups does not. In

this study, we investigate how the interactions of group size,

movement and recovery affect the probability of invasion by

disease into structured populations using a mechanistic

mixing model.

Lloyd-Smith et al. (2004) showed that transmission of

sexually transmitted diseases is well-described by a phe-

nomenological mixing model when partner exchange is very

rapid relative to the infectious period, and otherwise a

mechanistic pair-formation model is required. Keeling &

Rohani (2002) reached similar conclusions for a two-patch

system where host mixing was frequent. We expand upon

these analyses by exploring a broad range of relative

timescales of movement and disease recovery as well as

group and population size. Our analysis is motivated by

questions regarding the invasion of disease in wildlife

populations where host movement between groups can be

rare or relatively frequent (e.g. natal dispersal vs. frequent

fission and fusion of entire groups), infectious periods range

from several days to several years (e.g. rabies vs. bovine

tuberculosis), and group sizes range from monogamous

pairs to thousands of individuals. We focus on directly

transmitted diseases where hosts may move between groups,

but contacts that are sufficient for disease transmission

occur only within a group. These groups may reflect either

social or spatial structure in the host population.

The basic reproductive number, R0, is the expected

number of infections caused by a typical infectious

individual in a completely susceptible population (Anderson

& May 1991). The R0 statistic has been the traditional

standard by which epidemiologists and disease ecologists

quantify the potential growth of a disease (Anderson & May

1991; Diekmann & Heesterbeek 2000). In stochastic

models, a disease cannot invade the entire system when

R0 £ 1 and has a non-zero probability of invading only

when R0 > 1. In the simplest case of a susceptible-infected-

recovered (SIR) disease (Anderson & May 1991), R0 is the

ratio of two rates, or timescales: the infection rate and the

recovery rate. If transmission is density-independent, with

rate parameter b, and the recovery rate c is constant, then

R0 ¼ b/c (McCallum et al. 2001). Further, the average

length of the infectious period is 1/c. We use a stochastic

metapopulation model to illustrate the importance of

another ratio of two timescales, specifically the ratio of

the rates at which hosts move between groups (l) and

recover from disease (c). For the simple case of constant

recovery and no mortality, this ratio, l/c, is the expected

number of times an infectious individual will move between

groups.

First, we describe the simulation model and explore how

the interactions of group size, host movement and

infectious period affect the probability of invasion by a

disease. Next, we describe a relatively new metric of disease

invasion, R*, which is the number of groups that are

expected to become infected from the initially infected

group (Ball et al. 1997). In other words, R* is the group-level

analogue of R0. We then use the simulation model to

estimate R0 and R* and demonstrate that R* is a better

predictor of disease invasion in structured populations with

mechanistic host movement between groups. We conclude

with a number of testable predictions that follow from the

ideas presented here.

DEMONSTRAT ION OF DUEL L ING T IMESCALES

E F F EC T

We use an individual-based, stochastic, discrete-time SIR

model to investigate how the duelling timescales of host

movement and disease recovery affect the ability of a

directly transmitted disease to invade a spatially, or socially,

structured population. The total host population is evenly

divided into an array of groups. The host population is

further subdivided into susceptible, infected and recovered

classes where S, I and R, respectively, are the number of

hosts in each category. Three processes are described in the

model: infection, recovery of infected hosts and movement

between groups. As the intent of the model is a qualitative

description of different interactions, we have simplified

these processes as much as possible. For the case presented

here, we consider a successful invasion to have occurred

when the disease becomes a pandemic and infections occur

within all groups of a structured population. This narrow

definition does not count disease establishment within a

single patch as an invasion, but instead emphasizes the

spread of the disease among groups which is the pheno-

menon of interest here.

We assume that movement between groups is density-

independent, and all individuals have a constant probability,

l, of leaving their current group each time step. Groups are

organized on a square lattice and individuals can only move

to their four nearest-neighbouring groups. To avoid

boundary effects, opposite edges of the array are connected

to create a torus. In Appendix S1, we expand the analysis to

include a loop structure, where each group has only two

nearest-neighbours, and a spatially implicit array, where

individuals can move to any other group within a time step

[equivalent to the �island� model used previously (Hess 1996;

Fulford et al. 2002)]. We assume that infected individuals

recover to an immune class with a constant probability, c,

per time step.
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To isolate the effects of host movement and facilitate the

comparison of disease dynamics in a range of population

structures, we assume disease transmission is frequency-

dependent (Getz & Pickering 1983). Thus the probability of

infection per time step for each susceptible in group i is

given by the expression

1 � exp �b
Ii

Ni

� �
;

where b is the transmission coefficient, Ii is the number of

infected individuals in group i, and Ni is the total number of

individuals in group i. As we do not incorporate host

demographic dynamics, the assumption of frequency-

dependent rather than density-dependent transmission rep-

resents a rescaling of the transmission coefficient b. If

contact or transmission rates increase with population

density (McCallum et al. 2001), then disease invasion would

be even less likely when the population is divided into many

small groups than indicated by results presented here, but

our overall conclusions about the interaction of movement

and recovery timescales would still hold.

In a continuous-time model with frequency-dependent

transmission and a constant recovery rate, R0 ¼ b/c
(Anderson & May 1991; McCallum et al. 2001). For the

discrete-time model used here, b/c is an approximation of

R0, which works well when the probability of infection per

timestep is small and group sizes are relatively large. The

approximation does not change our qualitative conclusions,

however, for clarity we refer to the ratio b/c as R0. We also

assume that disease invasion is fast relative to birth and

death rates, so the total population size is constant. Each

simulation starts with one infected individual, and all groups

begin with the same number of individuals. As our spatial

model was symmetric, group sizes remained relatively

constant during the course of each run.

We begin by comparing the dynamics of two diseases

with the same R0 value (b/c) but where one disease is slow

(i.e. a chronic disease with a relatively long-infectious period;

b ¼ 0.05, c ¼ 0.01) while the other is an order of

magnitude faster (b ¼ 0.5, c ¼ 0.1). For time steps of

1 day, these parameters correspond to mean infectious

periods of 100 or 10 days respectively. We simulated the

invasion of these two diseases in three different host

population structures: one group of 1000 individuals

(equivalent to the common �mean-field approximation� of

random mixing among all individuals), 25 groups of 40

individuals and 100 groups of 10 individuals.

As expected, subdividing the population into more

groups decreases the probability of pandemic (Wilson &

Worcester 1945) because it decreases the average group size

and increases the number of between-group jumps the

disease must make to penetrate the entire population. A less

obvious effect is that slower diseases are more likely to

invade a structured population, even if they have the same

R0 as a faster disease. For the case of 100 groups of 10

individuals, the slow disease (b ¼ 0.05, c ¼ 0.01) infected,

on average, far more individuals than the fast disease (b ¼
0.5, c ¼ 0.1) before the disease died-out (658 ± 45 SE

compared with 19 ± 2.3 SE; Fig. 1). This typifies the

interaction of the host movement and disease recovery

timescales: diseases with longer infectious periods allow

more time for host mixing to occur and thus experience

populations that are effectively larger. When the movement

rate is zero, neither a fast nor slow disease will invade the

entire population regardless of the value of R0. When

movement is very frequent, both the fast and the slow
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Figure 1 Disease invasion depends upon population structure

(green circles: one group of 1000 individuals; red points: 25 groups

of 40 individuals; blue crosses: 100 groups of 10 individuals) and

the duration of the infectious period. A mean-field model of one

group (green circles) is a worse approximation of a structured

population for an acute disease with c ¼ 0.1 (a) than a chronic

disease with c ¼ 0.01 (b). For both diseases b/c ¼ 5, but the slow

disease causes more infections in the structured population. Lines

represent the mean of 100 simulations. Simulations with 25 or 100

groups were run on a toroidal spatial structure with a movement

probability l of 0.01, such that l/c ¼ 0.1 (a) or 1 (b).
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disease are likely to invade the structured population

provided that R0 > 1.

The simulated epidemics in the one-group and 100-group

populations differ markedly, but were less different for the

slow disease compared with the fast disease. In other words,

approximating a structured population by a mean-field

model (i.e. a single group with homogenous mixing of hosts)

is more appropriate for slow diseases than fast diseases

(Fig. 1; Cross et al. 2004). The faster the disease, the more

important it is to incorporate the spatial/social structure into

any analysis. The mean infectious period (1/c) defines the

natural disease timescale, and when movement occurs on

this timescale or slower then movement should be incor-

porated mechanistically, rather than phenomenologically.

Next we examine a range of host movement and recovery

probabilities. The proportion of the population infected

over the course of an epidemic depends on the expected

number of group changes per infectious lifetime (l/c), on

R0 (b/c), and on group size (Fig. 2). When movement is

infrequent relative to the recovery rate, R0 has little

predictive ability because few infections result for all values

of R0 (Fig. 2a). If movement is frequent relative to recovery,

increasing R0 increases the average proportion of the

population that becomes infected (Fig. 2a), consistent with

predictions from mean-field models (Anderson & May

1991; Diekmann & Heesterbeek 2000). Increasing the host

group size decreases the amount of host movement required

for the disease to invade the entire population (Fig. 2b).

Larger groups experience larger within-group outbreaks, and

hence more infected individuals dispersing from each

infected group (given density-independent movement). For

our model with frequency-dependent transmission, the total

number of infected individuals is, on average, a fixed

proportion of group size; for density-dependent transmis-

sion, the proportion infected would increase with group

size, causing greater increases in the number of infected

dispersers.

For high values of R0, the ratio l/c yields a sharp

threshold for invasion (Fig. 2b). As a rule of thumb, a

disease will invade the metapopulation if l/c is greater than

the reciprocal of the expected number of individuals that

will be infected within a single group. This makes intuitive

sense because in this model system l/c is the expected

number of between-group movements made by each

infectious individual. Thus, l/c multiplied by the expected

number of infected individuals is the expected number of

infected dispersers per group, which must exceed one for a

pandemic. When R0 is high, almost all individuals in a group

will be infected, so for a pandemic l/c should be greater

than the reciprocal of the average group size. For example, if

the group size is 200, then, on average, more than one

infectious individual in 200 will need to move between

groups (i.e. l/c > 0.005) for a pandemic to occur.

The mean proportion of the population that becomes

infected, shown in Fig. 2, obscures the underlying distribu-

tion of the number of infections per epidemic (i.e. over

different runs of the stochastic simulation). It is incorrect to

assume that the mean of this distribution is similar to the

median or mode, because in many cases the distribution is

bimodal with peaks centered on zero and one or close to

one (Fig. 3c,f,i). When movement is very infrequent relative

to recovery, the probability of a pandemic is close to zero

because the disease almost always dies out within the initial

group (Fig. 3a,d,g). When movement is frequent, then the

disease tends to either die out stochastically within the initial

Figure 2 The interaction of movement (l), transmission (b) and

group size determines the mean proportion of the population that

becomes infected. In (a) b varied from 0.2 to 2 while group size

was fixed at 10. In (b) group size was increased from 5 to 200 while

b was fixed at 2 (b/c ¼ 20). Increasing b/c only affected the

proportion infected when movement was frequent (a). Larger

group sizes require less movement for the disease to invade (b).

Each parameter set was simulated 1000 times on an 11 · 11

toroidal array of groups with a constant recovery probability c of

0.1.

590 P. C. Cross et al.

�2005 Blackwell Publishing Ltd/CNRS



group or invade most or all of the metapopulation

(Fig. 3c,f,i), with the relative frequencies of die out vs.

invasion determined by R0 as in mean-field models

(Diekmann & Heesterbeek 2000). With intermediate move-

ment rates, variation is considerable with regard to the extent

to which the disease penetrates the population (Fig. 3b).

These results (Figs. 2a and 3) agree with previous studies

when l/c is either much greater than one or close to zero.

When l/c is large, then group structure of the population is

less important and b/c is a good predictor of disease

invasion (Fig. 2a). When l/c is close to zero then b/c is a

good predictor of disease invasion within the initial group,

but the probability of the spread of disease between groups

is rather small. For the intermediate scenarios we analysed,

however, the ratio of movement to recovery rate (l/c) has

greater influence on the invasion of a disease than b/c.

PRED I C TORS OF A PANDEM IC

Recent theoretical work has extended the R0 concept to

account for depletion of the susceptible pool (Keeling &

Grenfell 2000), host spatial structure (Keeling 1999; Fulford

et al. 2002) and populations with heterogeneous infectious-

ness or susceptibility (Diekmann & Heesterbeek 2000).

However, even after incorporating these effects R0 may be

misleading in metapopulations with limited mixing because,

R0 as is traditionally used, is an individual-based measure.

Ball et al. (1997, 2004), Ball (1999), Ball & Lyne (2001) and

Ball & Neal (2002) demonstrated that the individual-based

R0 is not the best predictor of disease invasion in structured

host populations and introduced a group-level reproductive

number, R*, which is the average number of groups infected

by the initially infected group. This finding has been echoed

in the context of reproductive fitness of a new mutant in a

metapopulation (Gyllenberg & Metz 2001; Metz &

Gyllenberg 2001). In a model with phenomenological

mixing, R* > 1 is the formal threshold criterion for invasion

of a disease into an infinite number of finite-sized groups

(Ball et al. 1997).

The phenomenological mixing model used by Ball and

colleagues facilitates analysis, but to demonstrate the utility

of the R* metric in the context of interacting timescales of

host movement and recovery, we applied our simulation

model with explicit host movement between groups. For the

model described above, we estimated R0 and R* by tracking

the mean number of infections caused by the initially

infected individual or group respectively. Then we averaged

these estimates of R0 and R* over many runs of the

stochastic model. When a susceptible individual was

infected and two or more infected individuals were present

within the group, we randomly allocated the infection to

only one of those infectious individuals. To estimate R*, we

tracked the number of groups that were infected by

individuals that were themselves infected within the index

group. Infected individuals had to move to a completely

susceptible group and cause infection there in order to

contribute to R*. When individuals from multiple groups

moved to a susceptible group and caused an infection, we

randomly allocated the infection to one of the individuals

(and thus its source group). The mean estimates over many

simulations, denoted as R̂0 and R̂�, are �empirical� in the

sense that they are based on data collected from simulated
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Figure 3 Histograms of the proportion of

individuals infected during an epidemic for

different transmission (b) and movement (l)

values scaled by the probability of disease

recovery (c). Each parameter set was simu-

lated 1000 times on an 11 · 11 toroidal

array of groups with 10 individuals each and

a recovery probability c of 0.1.
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epidemics mimicking epidemiological contact-tracing data.

As estimates from model output, they incorporate the

effects of spatial structure, host movement, and depletion of

the susceptible pool. Thus they will differ from traditional

analytical R0 and R* values, which assume an infinite

susceptible population and, hence, overestimate the value of

these parameters when populations have a finite size.

We simulated the model using a range of transmission (b)

and movement (l) probabilities, a fixed recovery probability

c ¼ 0.1, and an 11 · 11 toroidal array with 10 individuals per

group and nearest neighbour movement. Each parameter set

was simulated 1000 times to generate mean values of R̂0 and

R̂�. We then plotted the relationship between the model

output variables R̂0, R̂�, and the proportion of the population

infected (Figs 4 and S2). Each line in Fig. 4 corresponds to a

fixed within-group transmission rate (b) and a range of

movement probabilities increasing from left to right.

The empirical individual-level R̂0 is not a good predictor

of the mean proportion infected: even when R̂0 is much

greater than one, the mean proportion infected may be low

depending upon the movement probability (Figs 4a and S2).

Also for different b, the proportion infected appears to

show a threshold at different values of R̂0. The group-level

R̂�, on the contrary, is a much better predictor of a

pandemic in a structured population (Fig. 4b). In an

idealized metapopulation, R* > 1 is the threshold above

which there is a finite probability of disease invasion (Ball

et al. 1997). In our simulations, the proportion infected

begins climbing at R̂� � 1 and rises most steeply around

R̂� � 2 (Fig. 4b). This gradual transition around the

threshold is typical of stochastic epidemic models, partic-

ularly with spatially constrained mixing, because the invasion

has many chances to die out before invading the entire

population. When transmission rates (and hence R0) are low,

R̂� is small for all values of movement (Fig. 4b, b ¼ 0.1).

When transmission is intermediate and movement is

frequent, the disease will either stochastically die out in

the initial group or invade the entire population (Fig. 3d–f),

resulting in intermediate values of R̂� and mean proportion

infected (Fig. 4b, b ¼ 0.5 and 1). Finally, when both

movement and transmission rates are high, R̂� and the

mean proportion infected are also high.

FUTURE EMP I R I CA L RESEARCH

These findings suggest important directions for empirical

studies, as well as a number of testable predictions. Previous

analyses of disease presence/absence in different host social

structures have not considered the interaction between

movement rates and the duration of the infectious period

(e.g. Cote & Poulin 1995; Nunn et al. 2000; Altizer et al. 2003;

Nunn et al. 2003a,b). However, our results illustrate that it is

the relative timescales of movement, recovery and infection

that determine the probability of a pandemic. A slow, chronic

disease may �perceive� a host to be relatively well-mixed with

frequent movement of individuals among groups. An acute

disease will perceive that same host population to be more

structured because movements between groups are less

frequent relative to the timescale of the infectious period

(Cross et al. 2004). We hypothesize that all else being equal,

chronic diseases will be more likely to penetrate structured

populations than acute diseases. Conversely, we hypothesize

that behaviourally susceptible host species, with large groups

and frequent movement, are likely to be more heavily

impacted by acute diseases than hosts with small groups and

infrequent movement. Thus the ratio of acute to chronic

diseases found in different host populations should increase

as a function of group size and movement rate.

Figure 4 R̂0 can be substantially greater than one and yet not cause

a pandemic (a), whereas R̂� is a much better single predictor of the

mean proportion of individuals infected (b). Each line represents a

fixed transmission parameter b and a range of movement

probabilities from zero to one (increasing from left to right)

sampled on a log scale. Each parameter set was simulated 1000

times on an 11 · 11 toroidal array of groups with 10 individuals

each and a recovery probability c of 0.1.
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A major focus of recent disease ecology has been how

transmission or contact rates depend on population density

(e.g. Bouma et al. 1995; Begon et al. 2003), but for

metapopulations, we have shown that movement rates are

also critical to understanding disease invasion (Figs 2–4).

Despite the importance of host movement, very few studies

have been published that examine the amount of mixing

between groups of many wildlife species. Our results can

help to guide the design of field studies intended to estimate

host movement for disease models. The proportion of

individuals that should be tracked and the duration of the

study will depend upon the infectious period of the disease

as well as the average group size of the host. As group sizes

and infectious periods increase, the amount of movement

required for a pandemic to occur decreases. Low movement

rates, however, will require researchers to track more

individuals to accurately estimate the amount of movement

between groups. If group sizes are large, for example 200,

and the disease is highly infectious, for example R0 > 5,

then only one in c. 200 infectious individuals needs to switch

between groups for a pandemic to become likely (Fig. 2b).

Researchers may estimate movement between groups

using genetic data or tracking of known individuals (Waser

et al. 1994; Koenig et al. 1996; Cain et al. 2003; Nathan et al.

2003). Radio-tracking or resighting data are more effective

than genetic methods as long as individuals frequently move

between groups relative to the duration of the study.

Genetic methods of estimating movement will be relevant

only for chronic diseases in large groups, and their use in a

disease context involves at least three major assumptions:

(i) past movement accurately reflects current movement;

(ii) short-term movements that are likely to be missed in

genetic signatures (e.g. foraging rather than mating) are

unimportant to disease dynamics; and (iii) moving indivi-

duals are as reproductively successful as non-moving

individuals (Waser et al. 1994).

FUTURE THEORET I CA L RESEARCH

Our findings emphasize that the group-level reproductive

number R* is a critical determinant of invasion success in

structured populations. Analytical formulations of R* in

systems with explicit host movement may clarify the

important interaction between timescales of host movement

and disease recovery, and help to formalize the rule of thumb

proposed above. Previous work on R* has focused on

models with phenomenological host mixing and an infinite

number of groups such that all new infections are in

susceptible groups (Ball et al. 1997, 2004; Ball & Neal 2002).

Analogous to recent developments in the theory of R0

(Keeling 1999; Keeling & Grenfell 2000), further work on R*

should consider finite populations with spatial constraints on

movement. Longer dispersal distances and spatial configu-

rations that increase the number of neighbouring groups

(Appendix S1) will mitigate the depletion of susceptible

groups and facilitate the invasion of a disease. These effects

are implicitly incorporated into our R̂0 and R̂� estimates, but

analytical exposition would help advance our understanding.

In our stochastic model, we made a number of simplifying

assumptions that could be relaxed to make our simulations

more realistic. First, the assumption of a constant probability

of recovery per time step, c, results in a geometrically

distributed infectious period. The effects of alternative

infectious period distributions on R* are unclear (see Keeling

& Grenfell 2000). For instance, with a fixed infectious

period, time spent in the home group while infectious will

increase the number of local infections, but will also diminish

the infectious period in any new group, thereby decreasing

the number of infections elsewhere. A fixed infectious period

would also cause fewer individuals to recover before moving,

compared with the geometric infectious period (with its

mode at one timestep). Second, we have assumed that

movement between groups occurs instantaneously and

without mortality, but if individuals spend time or die during

movement their infectious lifetime within the next group is

reduced, thereby decreasing R*. Finally, we assumed that

disease invasion was fast relative to the timescale of host

birth and death. This is less likely to hold for chronic

diseases, or for acute diseases that lead to rapid mortality

rather than recovery. Both natural and disease-induced

mortality shorten the infectious period and thus reduce R0

(Anderson & May 1991) and R*. Our broad conclusions

about the interaction of host movement and disease recovery

timescales should still apply, but investigating the effects of

host demographics and disease mortality on R* would be an

important extension of this study.

CONCLUS ION

Traditionally, epidemiologists and disease ecologists have

focused on R0 > 1 as a threshold for disease invasion (e.g.

Anderson & May 1991; Diekmann & Heesterbeek 2000).

We have shown that in metapopulations the relationship

between invasion of disease and an individual-level R0 is

often weak. Even for very large values of R0, a pandemic is

unlikely if the expected number of times an individual will

move between groups during their infectious lifetime (l/c)

is low (Fig. 2). Pandemics in structured populations require

both within-group and between-group transmission, and the

group-level reproductive number R* is a better predictor

than the individual-level R0 for these systems (Fig. 4).

Results from our individually based stochastic model

support the analytical results of Ball et al. (1997, 2004) and

Ball & Neal (2002), which proved that R* > 1 is the

threshold for disease invasion in a population with group

structure. As a general rule of thumb, the individual-level R0
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must be >1 and the expected number of group changes

while infectious (l/c) multiplied by the average group size

must be >1 for a pandemic to occur (Fig. 2b).

Chronic diseases with longer infectious periods allow for

more mixing to occur between groups. As a result, chronic

diseases will perceive more thoroughly mixed host popula-

tions and exhibit dynamics that are closer to those predicted

by mean-field models than acute diseases (Fig. 1). For the

same R0, chronic diseases are more likely to invade

structured populations than slow diseases. �Slow� and �fast�
diseases are relative terms: a fast, acute disease in a host

population with frequent movement between groups may

behave like a relatively slow disease in a population with less

frequent movement. The probability of a pandemic in a

structured population is thus an emergent property of the

interaction of host and parasite demography and behaviour,

incorporating a dimension of host behavioural susceptibility

arising from group size and movement rates. The results

presented here, and in a recent paper by Lloyd-Smith et al.

(2004), suggest that when contact, movement, birth and

death processes occur on a timescale similar to that of the

disease (i.e. the infectious period), these processes should be

incorporated mechanistically into disease models.
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